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Eight-vertex, free fermion, and Ising models are formulated using a convention 
that emphasizes the algebra of the local transition operators that arise in the 
quantum inverse method. Equivalent classes of models, are investigated, with 
particular emphasis on the role of the star-triangle relations. Using these results, 
a natural and symmetrical parametrization is introduced and Yang-Baxter 
relations are constructed in an elementary way. The paper concludes with a con- 
sideration of duality, which links the present work to a recent paper of Baxter 
on the free fermion model. 
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1. I N T R O D U C T I O N  

The quantum inverse method (QIM) gives a systematic method for con- 
structing the Bethe eigenstates of an integrable system in algebraic 
(operator) form. (1'2/ For the zero-field, eight-vertex model, and the related 
Heisenberg X Y Z  chain, the method has been worked out in some detail, 13) 
and progress has been made toward the calculation of correlation functions 
using the QIM. t4'5) For an integrable lattice model the method applies 
whenever there is a family of commuting transfer matrices, since this is a 
necessary and sufficient condition for the existence of Yang-Baxter 
relations. I6~ Such classes of models include six- and eight-vertex models, 
free-fermion models, and rectangular, triangular, and checkerboard Ising 
models. 

The adaptation of the QIM to lattice statistical systems is more recent 
than the solution of well-known exactly soluble models such as the non- 
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linear Schr6dinger equation t71 and other quantum field models./8/Undoub- 
tedly one reason for this is that a great deal was already known for the 
statistical lattice models before the advent of QIM using other methods. 19~ 
The QIM effectively gives a transformation from an interacting (nonlinear) 
system to a set of independent operators that create Bethe Ansatz states. 
Furthermore, recent work shows that the method can produce many useful 
transformations, which intertwine solutions to families of problems, (1~ 
while for the nonlinear Schr6dinger equation it is known that the QIM 
gives a type of Jordan-Wigner transformation.(111 

This paper is concerned with the formulation of eight-vertex and 
checkerboard Ising models in the language of the QIM, in the relationship 
between and among free-fermion models and Ising models, and with the 
construction of Yang-Baxter relations. The partition function for the free- 
fermion model was calculated by Fan and Wu (~2) and the model was 
investigated in some detail by FelderhofJ TM More recently there has been 
renewed interest in the free-fermion model, Ij4,~5/ and the paper by 
Baxter/~51 is based on a relationship with the checkerboard Ising model. 
The present paper is intended to prepare the way for an investigation of the 
relationship between the QIM and fermionization procedures for lattice 
models, in particular, in the relationship between the QIM and the 
Bogiolubov-Valatin transformation. I161 For the regular Ising model, the 
latter transformation has been exploited rather effectively by Abraham (~71 
to produce representations for n-point functions; it is hoped that a syn- 
thesis with the methods of the QIM will greatly extend the domain of these 
methods. 

The plan of the paper is as follows. In Section 2 we give a general for- 
mulation of vertex models in the language of the QIM. In Section 3 we for- 
mulate the checkerboard Ising model as a (nonstandard) eight-vertex 
model, and investigate classes of equivalent Ising models. The results of this 
section may be used to demonstrate the $4 symmetry of the free-fermion 
model noted by Bazhanov and Stroganov (~4) and treated in an Ising for- 
mulation by Baxter./15/ In Section 4 the star-triangle relation is used to 
give a symmetrical parametrization, particularly in conjunction with elliptic 
functions. These results are used in Section 5 to construct Yang-Baxter 
relations. Duality of our constructs with the methods of Baxter (15) is dis- 
cussed in Section 6. Some concluding comments are made in Section 7. 

2. N O T A T I O N  A N D  R E P R E S E N T A T I O N S  

We commence with an eight-vertex model on a square lattice. Each 
edge of the lattice has an edge variable (or arrow), which can take one of 
two states, represented here by broken and solid lines, and each vertex has 
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a weight associated with the various configurations of the four edges that 
meet there. In the language of the quantum inverse method, we will regard 
the horizontal edges as auxiliary variables and the vertical edges as quan- 
tum variables, and label them with Latin and Greek indices, respectively 
(see Fig. 1). For each vertex we define a local transition operator, which 
acts in the direct product of auxiliary and quantum spaces, as 

7 
L =  wll WI2] (2.1) 

_14221 1'922 3 

Here the w,j are operators acting on the quantum variables whose matrix 
elements wij(a, fl) are the Boltzmann weights for the configuration i, j, ~,/L 
Using the standard notation for the vertex weights (see Fig. 2), we may 

WII = I ; l  O31 , 14212=[05 ;7 ]  

[0 ] [o j w 6 0 
14'21 z W8 0 ' W22 z 14' 2 

represent the wli as 

(2.2) 

The local transition operators combine to form row-to-row transfer 
matrices represented as operators in the quantum variables for rows of N 
spins. Assuming periodic boundary conditions, this takes the form 

T = T r ( L I L 2 " " L N )  (2.3) 

where the matrix multiplication and trace operations are in the auxiliary 

Fig. 1. Labeling of edge variables. 
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Fig. 2. Standard weights for the eight-vertex model. 

variables. For a system with M rows, the partition function per site 
ZMN(Wl,..., WS) is given as a trace over the quantum variables, namely 

Z MN(W I,'", W S ) =  [Tr(TM) ] 1/MN (2.4) 

We note that changing the normalization of the weights has only a trivial 
effect on L, T, and ZMN: multiplying the weights by a factor p multiplies L 
and 7-MN by p and T by fiN. 

We shall refer to Eq. (2.2) as the "standard form" for an eight-vertex 
model. Suppose now that U and V are operators each acting on one 
auxiliary or quantum variable, respectively. Their direct product U@ V 
may be used to effect a similarity transformation on the local transition 
operator, 

L ' =  (V@ V) 1 L ( U |  V) (2.5) 

whose effect on the transfer matrix is a similarity transformation in the 
quantum variables only, namely 

T' = ( VI V2"" VN) 1 T(V x V 2 "  VN) (2.6) 

Here we use a rather obvious notation for the direct products of operators 
Vk acting on the various quantum variables along a row rather than 
employ the direct product notation in two different contexts. The partition 
function is invariant under the local transformation (2.5). 

These facts lead to a more general definition of an eight-vertex model, 
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as follows. First, for a standard model, an alternative way to write the local 
transition operator  is in the form 

2 L  = b/10-4 @ 0-4 - t - / /20-3 @ 0-3 -~-//30-3 @ 0-4 -}- u40"4 @ 0- 3 

- I - / / 5 0 1  @ o l -~- u60-  2 @ 0-2 -I-- i / /70-2 @ 0-1 - iu80-1 @ a2 (2.7) 

where 0- 4 is the unit matrix, at, i = l, 2, 3, are the Pauli spin matrices, and 
the factor 2 is inserted so that the standard weights wi are related to the 
weights ui by 

2wl = ul + u2 + u3 + b/4, 

2W3 = Ul - -  112 -~ /'/3 - - / / 4 ,  

2w5 = u5 + / / 6  -~ lg7 -~ U s ,  

2w 7 = u 5 -- u 6 -t- /'/7 - -  / /8 ,  

2W2 = Ul -~- l'/2 - - / / 3  - -  u 4  

2w4 = Ul - -  l/2 - -  Id3 "-~//4 

2w6 = u5 + lt6 - -  //7 - -  //8 

2W8 ~ U5 - -  //6 - -  127 -1- l/8 

(2.8) 

These relations are an involution between the w~ and ui , which is related 
to duality in the case of the free-fermion model. Clearly, any local trans- 
ition operator of the form (2.7), where now the operators 0, are arbitrary 
representations of the Pauli matrix algebra, will be similar to one or more 
eight-vertex models in standard form for some choice(s) of U and V, since 
all two-dimensional representations of the Pauli algebra are equivalent. In 
the new basis the local transition operator, written in the form (2.1), may 
have all 16 weights nonzero and therefore appear as a 16-vertex model, but 
we shall regard it as an eight-vertex model nevertheless. 

We conclude this section by investigating the most general similarity 
transformations connecting two eight-vertex models that are both in stan- 
dard form. We will distinguish the a operators after the similarity transfor- 
mation with a prime. Clearly, the form (2.7) can only be preserved if 03 and 
0-; (in both auxiliary and quantum spaces) are diagonal, since they are 
coupled with 0-4, which is invariant. Thus, the possible similarity transfor- 
mations are 

0-'1 = U o 1 U - I  =(#chN) 0-1+(ishN)a2 

0-~ = U0-2 U l = ( - i #  sh N) 0-1 + (ch N) 0-2 (2.9) 

0-'3 = U0-3 U -  1 = pa3, # = + 1 

with similar relations for Voi V 1. (We use the compact  notation sh and ch 
for the hyperbolic sine and cosine functions.) Using the subscripts a and q 
on the parameters # and N to denote whether they pertain to U or V, there 
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are four free parameters, in terms of which the effect of the transformation 
on the weights u i are 

U' 1 =I, t l ,  blr2=]2a#qbt2, blt3=#aLl3, Ut4=#qbl4 

U~ = ~a#q(ch  N a ch Nqu 5 - sh N ash Nqbl 6 

+ sh N. ch Nqu 7 -- ch N ash Nqus)  

u; = ( - s h  N.  sh Nqus + ch Nu ch NqU 6 

- c h  N o sh Nqu7 + sh N.  ch Nqu8) (2.10) 

u7 =/%(sh N.  ch Nqu5 - ch N.  sh Nqu 6 

+ ch N.  ch Nqu7 - sh N.  sh Nqu8) 

u~ = # ~ ( - c h  N.  sh Nqu 5 + sh N.  ch NqLt 6 

- sh N. sh Nquv + ch N.  ch Nqus) 

It is apparent that # .  and/% bring about permutations of the weights wi, 
while N.  and Nq affect the symmetry in the weights w5 to Ws, so we look at 
their effect independently. With Nu and Nq equal to zero, the transfor- 
mations (2.10) are equivalent to reversing all of the auxiliary and/or quan- 
tum variables: the permutations of the weights that this induces are shown 
in Table I. When/~.  and #q are set to + 1, Eqs. (2.10) are equivalent to 

w; = exp(N. - Nq) 14, 5 

w~ = exp( - N .  + Nq) W 6 
(2.11) 

w~ = exp(N. + Nq) w7 

w~ = exp( - N .  - Nq) w s 

which enables any eight-vertex model to be transformed into a represen- 
tation where w5 = w6 and w7 = ws. 

Table I. Permutations Under Similarity Transformation 

wl wl w; w~ ~; w~ 

W 1 W 2 W 3 W4 ~ W5 ~ W7 

W 2 WI W 4 W 3 ~ W 5 ~ W7 

W 3 W4 W1 W 2 ~ W7 ~ W5 

W 4 W 3 W 2 WI ~ W7 ~ W5 
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3. C H E C K E R B O A R D  IS ING M O D E L  

Checkerboard Ising models are readily formulated in the notation of 
Section 2, and their relationship to free-fermion eight-vertex models 
becomes rather transparent. Given an eight-vertex lattice, shown by broken 
lines in Fig. 3, we set the edge variables in one-to-one correspondence with 
Ising spins, that is, each two-state edge variable is replaced by a two-state 
spin. We then join these spins by bonds to form a diagonal checkerboard 
Ising model. Alternate faces of the Ising model contain vertices of the 
original eight-vertex model, and this creates the checkerboard. In Fig. 3, 
and throughout this paper, bonds are normalized by kT. The local trans- 
ition operators now correspond to a face of an Ising model and the alter- 
nate diagonal rows of spins are auxiliary and quantum variables, indicated 
in Fig. 3 as solid and hollow circles, respectively. From this figure it is seen 
that, in the spin variables, the operators w~ may be written as 

W l l  

W 1 2  

W 2 1  

W 2 2  

exp(J1 + J2 + J3 -I- J4)  

exp( - J 1  - J2 + J3 + J4)  

[-exp(J1 - J2 - -  J3  d- J 4 )  
/ 

Lexp( - J 1  + J2 - J3 + J 4 )  

[-exp( - J l  + J2 + J3 - J 4 )  
/ 

[_exp(J1 - J2 + J3 --  J4)  

I exp( - J l  - J2  - J3  - J 4 )  

exp(Jl + J 2  - -  J3 -- J4) 

exp(Jl + J2 - J3 - J4) 
/ 

exp( - J 1  - J2 - J3 - J4)_] 

exp(J1 - J2 + J3 - J4) ] 
/ 

exp( - J 1  + J2  -4- J3  - J4)_] 

exp( - J i  + J2 - J3 q- J4)q 
/ 

exp(J1 - J 2 -  J3 + J4) J 

exp( - J 1  - J2 + J3 q- J4)~ 
/ 

exp(Jl + J2 + J3 + J4) J 

z 

el\/J2 J1VJ2 
z = 

.: = 

(3.1) 

Fig. 3. Ising model (circles and solid lines) on eight-vertex edge variables (broken lines). 
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To see that this is equivalent to an eight-vertex model, and to calculate the 
weights in standard form, these wo may be written in terms of the standard 
operators a i followed by the similarity transformation a'~ = - a 3 ,  or; = % in 
both auxiliary and quantum spaces. This brings the model to standard 
form (2.7) with the weights 

ul = 2 ch(J 1 + J2 + J3 + J4), 

u3 = 2 ch(J 1 -- J2 - J3 + J43, 

u5 = 2  s h ( J l + J 2  + J3 + J4), 

u7=2  s h ( - J 1  + J2 + J3- -J43 ,  

u2 = 2 c h ( J 1 - J 2  + J3 - J43 

H 4 = 2 ch(J1 + J2 - J3 - J4) 

u 6 = 2 sh( - J 1  + J2 - J3 + J4) 

us = 2 sh(J1 + J2 - J3 - J4) 

Substituting (3.2) into 

wl = 2P ch(31 + J2 

W 3 ~--- 2P ch(J, - J2 

ws = 2P ch(31 - 3 2  

W 7 ~- 2P ch(J 1 + 3 2 

where 

It is useful to introduce dual variables in the usual manner 

sh(2Ji) sh(23~) = 1, tanh(2J~) ch(2J~) = 1 

(2.8) and transforming to dual variables gives 

+33+343, 

- -  3 3 -IV 3 4 ), 

+ 33 + 34), 

- J 3  + J4), 

w 2 = 2 P  c h ( J  1 - 3 2 -~- J 3  - -  3 4 )  

w 4 = 2 P  ch(J1  + J2 - J3 - J4)  

w6 = 2 P  ch(3~ + )2  + J3 - L )  

w8 = 2 P c h ( - J  , -~- 32 ~- J3  -~- J 4 )  

(3.2) 

(3.4) 

4 

P = l~ (sh 2J~) '/2 (3.5) 
i - - I  

Equations (3.4) have an identical structure to Eqs. (2.5) of Ref. 15: the 
duality with those equations is considered in Section 6. The weights (3.4) 
satisfy the free-fermion condition 

W 1W 2 -~ W 3 W  4 = W 5 W  6 "~ W T W  8 (3.6) 

as a consequence of elementary properties of the hyperbolic functions. An 
additional formula we will need is 

16P 2 = w 5 w 6 w 7 w  8 - w I w 2 w 3 w 4  (3.7) 

The right-hand side of (3.7) is invariant under similarity transfor- 
mations, while the left-hand side is a function of the Ji, therefore, we regard 
local transition operators to be equivalent when they are related by 

p(J'~) L(J'i) = P(J i ) (  U @ V) - 1 L(J,)(U @ V) (3.8) 
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where 

4 

P(J,) = l-[ (2 sh 2J,) 1/4 (3.9) 
i = 1  

that is, the similarity transformation is applied to transition operators that 
have been normalized by a factor (2 sh 2Ji) -1/4 for each Ising bond Ji. 
Solutions of (3.8) are most easily found by representing similarity transfor- 
mations as extra Ising bonds inserted in the rows and/or columns. For 
example, inserting a horizontal bond H between two local transition 
operators is equivalent to inserting the operator 

exp(H) 0-4 ~- exp( - H) 0-3 (3.10) 

in the auxiliary space product, remembering that we are using a represen- 
tation of the Pauli matrices where al is diagonal and 0- 3 has the usual 
(standard) form for 0-1- The inverse is given as 

(2ish2H) i [exp(H+irc/2)0-a+exp(_H_iTz/2)~r3] (3.1l) 

which is another bond together with a further normalization factor. The 
effect of this transformation on the a~ is readily calculated to be the same as 
Eq. (2.9) with N replaced by 2/~ and/~ = 1. We therefore write 

U(2/~) = exp(H) 0" 4 + e x p ( - H )  a3 

U 1(2/r~) = (2i sh 2H) --I [exp(H+ ire~2) 0-4 + e x p ( - H -  ire~2) ~3] 
(3.12) 

Similarity transformations may now be constructed as a sequence of 
star-triangle transformations (Fig. 4). The fundamental equations are 
found in Ref. 9, namely 

sh(2J,) sh(2Li) = Q - 1 (3.13) 

ch(2Ji) = ch(2Lj) ch(2L~) + coth(2L,) sh(2Lj) sh(2L~) (3.14) 

O 
L 1 

Fig. 4. Star triangle transformation. 
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where (i, j, k) is a cyclic permutation of (1, 2, 3) and we have written the 
constant on the right-hand side of (3.13) as g? i to conform with the 
notation of Ref. 15. We will also follow that paper by referring to the 
bonds related by (3.13) as "supplements." Another form of Eq. (3.14), 
which may be obtained from it by straightforward algebra, is 

ch(2Ji) = -ch(2J j )  ch(2Jk) + coth(2L,) sh(2Jy) sh(2Jk) (3,15) 

The similarity transformation in quantum space shown in Fig. 5 now 
leads to the conditions 

ch 2H = ch 2J 1 ch 2J2 + coth 2G sh 2J1 sh 2J 2 
(3.16) 

ch 2H = - c h  2J3 ch 2J4 + coth 2G sh 2 J  3 sh  2 J  4 

Expressing G and H in terms of Ji gives 

tanh 2G = - ( s h  2J1 sh 2J 2 - sh 2J 3 sh 2J4) 

x (ch 2J1 ch 2 J  2 + c h  2 J  3 ch 2 J 4 ) -  1 
(3.17) 

sech 2H = (sh 2'71 sh 2J2 - sh 2'73 sh 2'74 

x (ch 2'71 ch 2'72 + ch 2'7 3 ch  2,74) 1 

and from these we obtain an expression for (2 that is completely sym- 
metrical in the Ji, namely 

f2 = (sh 2G sh 2 H ) -  1 

= ~ [sh 2Ji ch('7, + ,72 + ,73 + J4--2'7i)~ 1/2 (3.18) 

i= 1 sh 2J i ch(J1 + J2 + J3 -t- J4 2Ji)J 

Fig. 5. 

J1 V J2 J1 V J2 

Similarity transformation in quantum space. 
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The equations that come from transformations in auxiliary space 
(Fig. 6) are similar. Corresponding to (3.16), we now have 

ch 2H' = ch 2J1 ch 2J4 + coth 2G' sh 2J~ sh 2J4 

ch 2H' = - c h  2J 2 ch 2J 3 + coth 2G' sh 2J2 sh 2J 3 
(3.19) 

which may be solved for G' and H'  as in (3.17). When the product 
sh 2G' sh 2H'  is calculated, the same symmetric expression is obtained as in 
Eq. (3.18). 

Given a (symmetric) eight-vertex model with weights wi, the inverse 
problem is to find a checkerboard Ising model equivalent to it under the 
relation 

p s v L s v = P l s ( U |  V) -~ LIs(U|  V) (3.20) 

We know from (3.7) that 

P 8 V  = (W5W6W7W8 -- W1W2W3W4) -1/4 (3.21) 

while Pts is given by (3.9); also, there will be four solutions for L~s if there 
are any. The weights given in Eqs. (3.2) or (3.4) are for a nonsymmetric 
eight-vertex model, so we use Eq. (2.11 ) and impose the conditions that the 
transformed weights ws, w6, w7, and ws, when substituted into (3.2), 
satisfy the relations ch 2 A - sh 2 A = ch 2 B -  sh z B. This gives three indepen- 
dent conditions, two equations for Nu and Nq 

ch(2Nq) = F 1 = (w 1 W4 _~_ w2w3)/2wsw 7 

ch(2N,) = (F')  1 = (wi w3 + W2W4)/2W5W7 
(3.22) 

and the free-fermion condition, which is therefore a necessary and sufficient 
condition for the equivalence. The constants F and F'  appearing in (3.22) 
are standard for the free-fermion model (is) and will be used in Section 4. 
For each of the four solution pairs N~, Nq the bonds are readily deter- 

0 - - 0 

L4 V L 3  J1 V L 3  J1 V J 2  

Fig. 6. Similarity transformation in auxiliary space. 

822/46/3-4-8 
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mined via inverse tanh functions using ratios of equations in (3.2). These 
four sets of bonds will be related as follows: 

(i) 
(ii) 

(iii) 

(iv) 

Because 

J1, J2, J3, J4 

L4, L3, Lz, L1 (3.23) 
Lz, L1, L4, L3 

J3, J4, J1, J2 

there is a one-to-one mapping between edge variables and spins, 
periodic boundary conditions are equivalent for equivalent eight-vertex and 
Ising models, so that the normalized partition functions are the same for all 
finite M and N, that is, 

P8v(W/) Z MN( W i) -~- /)is( J:) Z MN( Ji) (3.24) 

Baxter l~51 has shown how the equivalent sets of solutions in (3.23) may be 
used to "shuffle" the rows and columns so as to factor the partition 
function into the product of four regular Ising partition functions each with 
bonds J:, L: in the two directions--the "hidden symmetry" of Bazhanov 
and Stroganov. ~4i It is an important ingredient of this factorization that 
the normalization factors that occur, (3.9), are themselves factorized. 

4. ELLIPTIC FUNCTION P A R A M E T R I Z A T I O N  

The foregoing relations lead to a natural parametrization of the Ji, 
based on the systematic use of the star-triangle relation. For example, if 
the pair of constants f2 and H is regarded as given, then J2 and J4 may be 
determined from J1 and J3 using Eqs. (3.16). Three such pairs of relations, 
involving f2 and three H's, will serve to parametrize all four J:'s. Therefore, 
for cyclic permutation (i, j, k) of the integers (2, 3, 4), we define the pairs of 
constants 

F: = 2(w 5 W6WvW8)I/2/(W 1W i q'- WjWk) (4.1) 

h i = ( w  2 _t_ Wk _ 2  wZ wZ) /Z(WlWiq_WjWk)  

= - ( u l  ui + ujuk)/(Wl wi + w;wk) (4.2) 

Note that in order to achieve a symmetric notation in what follows, we 
have not adopted the notation of Ref. 15. The terms F 4 and h4 correspond 
to the usual F and h, (18) and it is well known that free-fermion models with 
the same value of F and h have commuting row-to-row transfer 
matrices. (tS) The term F 3 appears in Eq. (3.22) as F'; models with the same 
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values of F3 and h 3 have commuting column-to-column transfer matrices. 
We set G 4 = G ,  H4 = H, G 3 = G ' ,  and H3 = H '  and we define constants G 2 
and H2 by 

sh 2G2 sh 2H2 = f2 1 (4.3) 
and 

ch 2H 2 = ch 2J  1 ch 2J  3 + coth 2G 2 sh 2J  1 sh 2J  3 

ch 2H2 = - c h  2J2 ch 2./4 + coth 2G2 sh 2J  2 sh 2J  4 
(4.4) 

Straightforward but tedious calculation now shows that the relationship of 
F i and hi to the bonds Gi and Hi is 

Further, we have 

Fi = tanh 2Hi (4.5) 

h i = - c o t h  2G~ sech 2H~ (4.6) 

u~ = (~i  + hi - 1)///,.2, i =  2, 3, 4 (4.7) 

Consequently, we may employ the parameters f2, H2, H3, and H 4 in place 
of  J 1 , ' " ,  J 4  and this is most conveniently done using elliptic functions. 

We use the standard notation for elliptic functions found, for example, 
in Ref. 19. For  a free-fermion model with real weights, 0 2 is real, and in 
order to keep the elliptic function moduli k, k '  real and in the range 
0 < k, k ' <  1, we distinguish three regimes as in Ref. 15: 

I - f 2  2> 1 (low temperature) 

II 0 <s 2 < 1 (high temperature) 

III  s 2 < 0  (high temperature) 

The critical point is Q = 1, separating regime I from regime II. From (4.7) 
this is equivalent to h i=  _+1, i =  2, 3, 4; these are the conditions for self- 
duality (Section 6). In Table II we give the relation between f2 and k, k '  in 

Table II. Elliptic Function Def in i t ions  

Regime I Regime II Regime III 

s 0<s .02<0 
k ' = s  i k ' = g 2  i k ' / k = . 0  
21 =K 21=K )~l = K - - i K "  

sh 2J~ = cs(~i) sh 2J,. = c s ( o ; i ) / k '  sh 2J i = - - i  d s ( ~ i ) / k '  

ch 2J, = ns(~i) ch 2 J  i = ds(eti)/k' ch 2Ji = --i cs(~i)/k' 
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each of the regimes, and define a parameter 2~ in terms of the complete 
elliptic integrals K, K'. In place of the Ji and Li we introduce arguments cq 
by 

Ji = J(~i), L i = J(2~ - 7i) (4.8) 

where the function J(a) is defined in Table II for each regime, so that Ji 
and Li are automatically supplements. Similarly, we introduce three 
arguments 2 i in place of Gi and Hi, i = 2, 3, 4, by 

H, = J(2i), G i = J(2~ - 2i) (4.9) 

The underlying relations are the star-triangle relations (3.14) and (3.15), 
and these are satisfied by the bonds (4.8) provided the arguments satisfy 

~1 + ~ 2 + e 3  = 2 t  (4.10) 

The parametrization implicit in (3.16), (3.19), and (4.4) now simplies 
(modulo the periodicity of elliptic functions) to 

21 + 2 i=  o.q + ~j, 21--2i=~i+0~k (4.11) 

where (i,j, k)is a cyclic permutation of (2, 3, 4). The relationship between 
the ai and 2 i turns out to be 

2~1 = 21 + 22 + 23 + 24, 

2~ 3 = 21 + 22 -- 23 - -  2 4 ,  

2~ 2 = 21 - -  2 2  - -  23 + 24 

2~ 4 = 21--22 + 23 -- 24 
(4.12) 

This guarantees that the arguments a i satisfy 

(4.13) 

The advantage of these arguments is that )q is a function only of the fun- 
damental constant/2 and the three 2 i each depend only on one pair Fi, hi. 
Furthermore, row-to-row transfer matrices commute for families having the 
same values of )iq and 24, and column-to-column transfer matrices com- 
mute for families having the same values of )q and 23. 

5. Y A N G - B A X T E R  R E L A T I O N S  

In the QIM Yang-Baxter relations are conventionally written as (2~ 

(L | L ')  S" = S"(L' | L) (5.1) 
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where L and L' are local transition operators, the direct product is in 
auxiliary space, and the matrix R" operates in this direct product space 
only�9 Since all the terms in this direct product involve products of quantum 
operators, (5.1) is a set of commutation relations�9 They have a simple 
visualization, which is easily appreciated when the three objects are set on 
an equal footing�9 Introduce the notation that to each of the local transition 
operators there corresponds a 4 x 4 matrix R according to 

,~ ,tjfl R~ = w~(c~, f i )= _~, (5.2) 

where the operators w U are defined in Section 2; then the Yang-Baxter 
relations appear as 

R r R 'vjz t ~  " k L k 2  - -  R"JlS2R'~2R ~ (5.3) 
all  fli2 ,/1J2 - -  ill2 eeJ2 ~Jl 

The graphical interpretation of this as a factorizable S-matrix is shown in 
Fig. 7. This also serves to show the symmetry of the relations between the 
three local transition operators. Equation (5.1) is only one interpretation of 
(5.3), in which the vertical edges are taken as the quantum variables and 
the horizontal edges as auxiliary variables. Two other interpretations, 
obtained by rotating Fig. 7 through _+ 120 ~ are concerned with the com- 
mutation of either L or L' with a third operator L", and with different 
choices of auxiliary and quantum variables. In this case the Yang-Baxter 
relation must be written as 

(L | L") S ' =  S'(L" | L) 

(L' | L") S =  S(L" | L') 

(5.4a) 

(5.4b) 

i 2 

�9 k 1 

i I 

Ix 

Fig. 7. 

7 

�9 R '  

11 J2 

IX 

Graphical interpretation of Yang-Baxter relations. 
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where the appropriate forms for L" corresponding to (5.4a) and (5.4b) are 

R'Yk~k2J~J2 = wj~k~" (kl, J2) (5.5a) 

R '.'k~k2 = W ' j 2 k 2 ( J l ,  k 1 ) (5 .5b)  J1J2 

In the free-fermion case, row-to-row transfer matrices commute if and only 
if they have the same values for F4 and h4; similarly, column-to-column 
transfer matrices commute if and only if they have the same values of/"3 
and h3. Hence, with either of the interpretations (5.5), the values of 
1"3, h3, 1"4, and h 4 for the third eight-vertex model w" may be read off from 
the diagram because these constants "propagate along the lines," while all 
three operators have the same value of 1"2. 

The results of Section 3 make the construction of Yang-Baxter 
relations relatively trivial, and the interpretation of the third model L" 
quite easy. In addition to the transformation shown in Fig. 5, we need the 
transformation shown in Fig. 8, called a "star-star" transformation in 
Ref. 13. When the edges and vertices in Figl 7 are replaced by the Ising 
spins and bonds of Section 3, the Yang-Baxter relations for the checker- 
board Ising model are seen to be precisely the sequence of transformations 
shown in Fig. 9. First the bond J~ is moved through, using the star-star 
transformation, then the bonds J~ and J~ are moved through as similarity 
transformations, and then J'i' induces a second star-star transformation. 
The condition for all this to work is that, for each of the intermediate steps, 
the four bonds involved must have the same f2 value. This will be so if and 
only if L and L' have the same values of f2 and H 1. There are two 
star-triangle conditions for each of the four moves (J~',,., J~) in Fig. 9 and 
these are most readily seen in terms of elliptic functions. In the order 
corresponding to J~' they are 

52 -I- 5~ -1- 5~1' = 221,  

51-5'~ + 5;' =0,  

54 + 5' 1 + 5;' = 221, 

53 - -  5 ;  -§ 54t = 0, 

t t! 
51 + 54 - -  51 = 0 (5.6) 

52-- 5~-- 5-)' = 0 (5.7) 
r tt 

5 3 - - 5 2 - - 5 3  m-O (5.8)  

54 - 5 ~  - 5~' = 0 ( 5 . 9 )  

Fig. 8. Star-star transformation. 
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J1 t ,;11 _ ,i t L4 : ~ T 3  
L' 1 

Jl' I ' ~ N ~  '3 

J ~ J ;  

J; 

jj I 
4 1 ~ .  J4" 

Fig. 9. Yang-Baxter relation for Ising model. 

Each pair of equations implies that 

! 
~4 ~- 24 

i.e., g 4 = H i .  In addition, they give 

(5.10) 

22' = 21 + 22 - 21 (5.11) 

23'=23 (5.12) 

24' = 2 ;  (5.13) 

On first inspection, this appears not to have the expected symmetry 
between Ji, J;, and J~', but this is merely due to the unsymmetrical manner 
in which they appear in Fig. 9. However, the labeling there is the 
appropriate choice for the QIM, so we will not discuss more symmetrical 
labeling schemes, except to note that if such a scheme is employed (say 
with J1, J'l, and J~' as the sides of the inner triangle on the left-hand side), 
then (5.11) becomes )~2 + 2~ + 2j = 21. Since the other 2i are simply per- 
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muted in some simple manner, this shows that the Yang-Baxter relation 
for the checkerboard Ising model (and the free-fermion model also) is 
simply a generalized star-triangle relation. 

6. D U A L I T Y  R E L A T I O N S  

It is evident that our work is closely related to Baxter's. (15) In fact, it is 
connected by a duality transformation and to explore this we have drawn 
our Ising lattice and its dual in Fig. 10. The Ising lattice of Section 3 is 
shown in light lines and the dual lattice in heavy lines: the spins on the 
dual lattice are shown as squares and the bonds on the dual lattice are 
indicated with primes. The underlying eight-vertex lattice is shown by 
broken lines. Baxter constructs his relationship between an eight-vertex 
model and an Ising model by a mapping that is more complex than ours. 
The Ising spins are not in a one-to-one relationship with edge variables; 
rather, half of them are at vertices (solid squares) and the other half are at 
face centers (open squares). If the former (vertex) spins are summed out, 
we have an interaction around a face (IRF) model, where each face has a 
weight determined from the Ising bonds J'i. The configurations of the 
remaining (face) spins may be set in a two-to-one relation with vertex con- 
figurations by the usual method of choosing one of the two edge states to 
separate unlike spins and the other edge state to separate like spins. In 

= 

= 

J' J' i 

J, J'4 

Fig. 10. Ising model (light lines) and dual Ising model (heavy lines) on eight-vertex lattice 
(broken lines). 
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+ + 

+ + 

+ 

+ 

w w w 
1 2 3 

+ + 

w 
4 

_1+ + i  + 

;777 + i  + 

+ 

+ + 

+ + 

+ 

W W W W 
5 6 7 8 

Fig. 11. Eight (of 16) face spin configurations and the corresponding eight-vertex weights. 

Fig. l l  the unbroken lines separate unlike face spins; only half of the 16 
spin configurations are shown, corresponding to the eight vertex con- 
figurations: the other eight spin configurations are obtained by reversing all 
face spins. Each eight-vertex weight is now the sum of two Boltzmann fac- 
tors from the dual lattice Ising model, and an elementary calculation shows 
that they are given by 

wi = 2 ch(Ji + J i  + J ;  + Z,), 

w; = 2 ch(Ji - J ;  - J;  + Ji), 

w; = 2 ch(Ji - J i  + J;  + J;), 

w} = 2 ch(J; + J;  - J;  + J;), 

w~ = 2 ch(J' 1 - J~ + J~ - J~,) 

w; = 2 ch(J; + J~ - J~ - J~) 

w~ = 2 ch(J'  1 + J~ + J~ - J ; )  

w~ = 2 c h ( - J ' l  + J~ + J~ + J ; )  

(6.1) 

which is the same as Eqs. (3.4) with P = 1, and with Ji replaced by J~. We 
need the relationship between the partition functions of the two models. 
We assume periodic boundary conditions for the eight-vertex model, but in 
the present case this is not equivalent to periodic boundary conditions for 
the Ising model (unlike Section 3). In fact, if periodic boundary conditions 
are applied to the Ising model, then after the vertex spins have been sum- 
med out, the remaining face spins can only represent configurations of an 
eight-vertex model for which there are an even number of unbroken ver- 
tical (horizontal) edges in any row (column). To get an odd number in a 
row (column), it is necessary to use antiperiodic boundary conditions. 
Thus, the partition function of the eight-vertex model is the sum of four 
Ising partition functions, namely 

2Z8v = Zis,ep +/IS,PA -{- ZIS,AP -{'- ZIS,AA (6.2) 
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where Z (upper case) stands for the partition function of the whole lattice 
with weights given by (6.1) and the subscripts PP, PA, AP, and AA refer to 
the four choices of boundary condition on the Ising model. This differs 
from the conclusion of Baxter(15); however, in the thermodynamic limit 
M, N ~ ~ ,  we have for the partition function per site the simple result 

Zsv(W~) = Zis(J;) (6.3) 

The left-hand side may also be evaluated from Section 3, since the eight- 
vertex model w~ is equivalent under Eq. (3.20) to an Ising model with 
bonds J~, while the normalization factor psv(W~) is readily calculated as 

P s v ( W ~ )  = (WI5Wt6Wt7Wt 8 - -  W; 1Wf2Wt3Wr = D i s ( J ; )  ( 6 . 4 )  

Duality relations for the eight-vertex and free-fermion models follow 
immediately from these results. The relations assume a simple form when 
we work with a nonsymmetric eight-vertex model, constructed from a given 
symmetric model by a similarity transformation using Ha = H3 = H' and 
Hq = H 4 = H from Eqs. (3.22). Here we denote the weights of this nonsym- 
metric model by w i. Given such an eight-vertex model, we have Ising 
models on the dual pair of lattices of Fig. 10. We denote a set of bonds that 
come from our construction of Section 3 by Ji; for each set Baxter's con- 
struction gives a second Ising model on the dual lattice with the bonds Jz. 
Alternatively, we may use the same Ising bonds Ji on the Ising lattice and 
its dual, to obtain two different eight-vertex models that are dual. The first 
has weights u~, given by Eqs. (3.2), from which the standard weights wi are 
found using Eqs. (2.8). The second has weights wi given by (6.1) using the 
same Ji. Elementary calculations show that the duality relation for the 
eight-vertex model is the linear transformation 

]~i = b/i '  l~i+ 4 = ch 2J2 u~- sh 2J2 ui+ 4 (6.5) 

for i=  1, 2, 3, 4, where ui and wi are related by Eqs. (2.8). This is an 
involution, since the inverse transformation is 

Wi ~- ~ti, Wi4 4 = c h  2J2fi i -  s h  2J2/~i+ 4 (6.6) 

For the first four weights the relation assumes the same simple form 
regardless of the choice of symmetry for the weights, but it is more com- 
plicated for the other four with any other choice. It is obvious from 
Eqs. (3.18) and (4.2) that the constants s and hi transform as 

sO=f2 -1, /~i= h,:-~ (6.7) (6.8) 
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in agreement with the fact that the critical point of the model, s = 1, 
hi = _+1, i = 2, 3, 4, is also self-dual. The duality relations for the partition 
functions may now be read off as 

Psv0bl ,.'., ws) Zsv(~l ,-.., w8) = Psv(Wl ,..., w8) Zsv(Wl ,..., w~) (6.9) 

and 

Pis(Ji) Zis(Ji) = pis(Ji) Zts(Ji) (6.10) 

7. C O N C L U D I N G  C O M M E N T S  

We have introduced a formalism for two state vertex and spin models 
in terms of which equivalences are completely transparent, being different 
representations of the same algebraic objects. Because the formalism deals 
directly with edge variables, it is likely to be more straightforward for many 
purposes, and will certainly be easier to use for finite lattices. It is par- 
ticularly suited for use with the quantum inverse method, and was in fact 
motivated as the initial step in an ongoing investigation of the relationship 
between the QIM and the Jordan-Wigner transformation. The QIM con- 
sists of a direct transformation to a set of operators that create Jost 
functions, Bethe eigenstates, etc., and an inverse transformation that 
recreates the original quantum fields. Local transition operators and 
Yang-Baxter relations are the important ingredients in the direct trans- 
form, and they have been the main subject of this paper. The inverse trans- 
form, which is usually called the quantum Gelfand-Levitan equation, may 
be conveniently constructed by a method given by Smirnov for a lattice 
version of the nonlinear Schr6dinger equation. (2I) The method depends on 
inverting the local transition operators and its application to the free-fer- 
mion model will be the subject of a future paper. However, we think it 
interesting to give the inversion relation here, particularly since it is 
obviously related to inversion for transfer matrices discussed by Baxter. ~ 
First we define the product L" of two local transition operators L', L as 
follows: 

L " = L ' L  (7.1) 

is equivalent to 

wi~(~, 7) = w,~.(~, 13) wj~(~, 7) (7.2) 

where the summation convention is assumed, and the weights are matrix 
elements of the local transition operators as in Section 2. All three 
operators act at the same site. Then, for a given L, we want to find the 
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operator L' so that L" is the unit operator, that is, w~(c~, 3) = 6ij6~. When 
Eq. (2.7) is substituted into both sides of (7.2), each of the weights u7 is the 
sum of eight products of weights ujuk, and the condition that L" be the 
unit operator is that u~' = 2, while uT= 0 for i = 2,..., 8. For an ]sing model, 
these products may be expressed as hyperbolic functions in the bonds J~ 
and Ji using Eqs. (3.2), and when this is done the inverse turns out to be 

L - I ( J 1 ,  J2,  J3,  J4)  

= ( --4 sh 2J2 sh 2J4)- 1 L( - J 3 ,  ,/4 + i~/2, -J~,  J2 + i~/2) (7.4) 

The similarity with Baxter's work is apparent, in that inverses are obtained 
by a combination of reversing the signs of Ji and adding multiples of i~/2. 

In conclusion, we note that the star-triangle relation is completely ubi- 
quitous in the free-fermion and checkerboard Ising models, even in the 
language of the QIM, since it generates different representations of the 
QIM operators. Even the Yang-Baxter relations, which have been con- 
structed using a sequence of star-triangle relations, turn out to be a single 
generalized star triangle relation. It seems most likely that similar methods 
will be useful for elucidating relations between q-state models, such as the 
nonintersecting string (NIS) model investigated by Perk and WuJ 22) These 
questions are under investigation, and will be reported at a later time. 
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